Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Evol Med Public Health ; 11(1): 80-89, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2289323

RESUMEN

Non-pharmaceutical interventions (NPIs), such as social distancing and contact tracing, are important public health measures that can reduce pathogen transmission. In addition to playing a crucial role in suppressing transmission, NPIs influence pathogen evolution by mediating mutation supply, restricting the availability of susceptible hosts, and altering the strength of selection for novel variants. Yet it is unclear how NPIs might affect the emergence of novel variants that are able to escape pre-existing immunity (partially or fully), are more transmissible or cause greater mortality. We analyse a stochastic two-strain epidemiological model to determine how the strength and timing of NPIs affect the emergence of variants with similar or contrasting life-history characteristics to the wild type. We show that, while stronger and timelier NPIs generally reduce the likelihood of variant emergence, it is possible for more transmissible variants with high cross-immunity to have a greater probability of emerging at intermediate levels of NPIs. This is because intermediate levels of NPIs allow an epidemic of the wild type that is neither too small (facilitating high mutation supply), nor too large (leaving a large pool of susceptible hosts), to prevent a novel variant from becoming established in the host population. However, since one cannot predict the characteristics of a variant, the best strategy to prevent emergence is likely to be an implementation of strong, timely NPIs.

2.
PLOS global public health ; 2(4), 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2281906

RESUMEN

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has led to a wide range of non-pharmaceutical interventions being implemented around the world to curb transmission. However, the economic and social costs of some of these measures, especially lockdowns, has been high. An alternative and widely discussed public health strategy for the COVID-19 pandemic would have been to ‘shield' those most vulnerable to COVID-19 (minimising their contacts with others), while allowing infection to spread among lower risk individuals with the aim of reaching herd immunity. Here we retrospectively explore the effectiveness of this strategy using a stochastic SEIR framework, showing that even under the unrealistic assumption of perfect shielding, hospitals would have been rapidly overwhelmed with many avoidable deaths among lower risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding would have likely led to a large increase (>150%) in the number of deaths compared to perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing infections to spread among the wider population would not have been a viable public health strategy for COVID-19 and is unlikely to be effective for future pandemics.

3.
Evol Med Public Health ; 11(1): 90-100, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2281905

RESUMEN

OBJECTIVES/AIMS: Prolonged infections of immunocompromised individuals have been proposed as a crucial source of new variants of SARS-CoV-2 during the COVID-19 pandemic. In principle, sustained within-host antigenic evolution in immunocompromised hosts could allow novel immune escape variants to emerge more rapidly, but little is known about how and when immunocompromised hosts play a critical role in pathogen evolution. MATERIALS AND METHODS: Here, we use a simple mathematical model to understand the effects of immunocompromised hosts on the emergence of immune escape variants in the presence and absence of epistasis. CONCLUSIONS: We show that when the pathogen does not have to cross a fitness valley for immune escape to occur (no epistasis), immunocompromised individuals have no qualitative effect on antigenic evolution (although they may accelerate immune escape if within-host evolutionary dynamics are faster in immunocompromised individuals). But if a fitness valley exists between immune escape variants at the between-host level (epistasis), then persistent infections of immunocompromised individuals allow mutations to accumulate, therefore, facilitating rather than simply speeding up antigenic evolution. Our results suggest that better genomic surveillance of infected immunocompromised individuals and better global health equality, including improving access to vaccines and treatments for individuals who are immunocompromised (especially in lower- and middle-income countries), may be crucial to preventing the emergence of future immune escape variants of SARS-CoV-2.

4.
PLOS Glob Public Health ; 2(4): e0000298, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1854964

RESUMEN

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has led to a wide range of non-pharmaceutical interventions being implemented around the world to curb transmission. However, the economic and social costs of some of these measures, especially lockdowns, has been high. An alternative and widely discussed public health strategy for the COVID-19 pandemic would have been to 'shield' those most vulnerable to COVID-19 (minimising their contacts with others), while allowing infection to spread among lower risk individuals with the aim of reaching herd immunity. Here we retrospectively explore the effectiveness of this strategy using a stochastic SEIR framework, showing that even under the unrealistic assumption of perfect shielding, hospitals would have been rapidly overwhelmed with many avoidable deaths among lower risk individuals. Crucially, even a small (20%) reduction in the effectiveness of shielding would have likely led to a large increase (>150%) in the number of deaths compared to perfect shielding. Our findings demonstrate that shielding the vulnerable while allowing infections to spread among the wider population would not have been a viable public health strategy for COVID-19 and is unlikely to be effective for future pandemics.

5.
Epidemics ; 38: 100546, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1676726

RESUMEN

Mathematical modelling and statistical inference provide a framework to evaluate different non-pharmaceutical and pharmaceutical interventions for the control of epidemics that has been widely used during the COVID-19 pandemic. In this paper, lessons learned from this and previous epidemics are used to highlight the challenges for future pandemic control. We consider the availability and use of data, as well as the need for correct parameterisation and calibration for different model frameworks. We discuss challenges that arise in describing and distinguishing between different interventions, within different modelling structures, and allowing both within and between host dynamics. We also highlight challenges in modelling the health economic and political aspects of interventions. Given the diversity of these challenges, a broad variety of interdisciplinary expertise is needed to address them, combining mathematical knowledge with biological and social insights, and including health economics and communication skills. Addressing these challenges for the future requires strong cross-disciplinary collaboration together with close communication between scientists and policy makers.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Humanos , SARS-CoV-2
6.
Curr Biol ; 31(4): R174-R177, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1023167

RESUMEN

Herd immunity is an important yet often misunderstood concept in epidemiology. As immunity accumulates in a population - naturally during the course of an epidemic or through vaccination - the spread of an infectious disease is limited by the depletion of susceptible hosts. If a sufficient proportion of the population is immune - above the 'herd immunity threshold' - then transmission generally cannot be sustained. Maintaining herd immunity is therefore critical to long-term disease control. In this primer, we discuss the concept of herd immunity from first principles, clarify common misconceptions, and consider the implications for disease control.


Asunto(s)
Control de Enfermedades Transmisibles , Inmunidad Colectiva , Animales , Epidemias/prevención & control , Epidemias/estadística & datos numéricos , Humanos , Ratones , Vacunación
7.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: covidwho-711780

RESUMEN

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Inmunidad Colectiva , Modelos Teóricos , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , COVID-19 , Niño , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Erradicación de la Enfermedad , Composición Familiar , Humanos , Pandemias/prevención & control , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Instituciones Académicas , Estudios Seroepidemiológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA